If it's not what You are looking for type in the equation solver your own equation and let us solve it.
84p=720-294p^2
We move all terms to the left:
84p-(720-294p^2)=0
We get rid of parentheses
294p^2+84p-720=0
a = 294; b = 84; c = -720;
Δ = b2-4ac
Δ = 842-4·294·(-720)
Δ = 853776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{853776}=924$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-924}{2*294}=\frac{-1008}{588} =-1+5/7 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+924}{2*294}=\frac{840}{588} =1+3/7 $
| 12x+3=-(2x-3)+16x | | 4x+14=x+6 | | 1.50+1.50n=21.00 | | N^2=n+42 | | 5+9h=50 | | 32=2u-26 | | 2+15w-9646=0 | | -x/6=40 | | u/6+50=59 | | u6+50=59 | | u6+ 50=59 | | 14x+6=16x+4=130 | | 3=z+7/7 | | 14x+6=16x+4+130 | | 2x+6+3x+44=180 | | 21+2b=13 | | -5(3x-5=2(x-52)-41 | | 16x+4=14x+6+130 | | -1+1/2=-2+1/2x+1/4 | | 6x+4=2x-10+38 | | 5=g+21/8 | | 2x-10=6x+4+38 | | 5x–470=365 | | 32/8=2x-2 | | 4(c-67)=44 | | 2x-10+38=6x+4 | | 180+40=2a | | 0.20+7=0.30p+5 | | (3x+6)°+(5x-8)°=1 | | 2.5+2g=14.5 | | 42a÷4=84 | | 3(x+4)+-2=2(2x+5)-x |